Abstract
Recently, we demonstrated the existence of nonextensive behavior in neuromuscular transmission (da Silva et al. in Phys Rev E 84:041925, 2011). In this letter, we first obtain a maximum-likelihood q-estimator to calculate the scale factor ([Formula: see text]) and the q-index of q-Gaussian distributions. Next, we use the indexes to analyze spontaneous miniature end plate potentials in electrophysiological recordings from neuromuscular junctions. These calculations were performed assuming both normal and high extracellular potassium concentrations [Formula: see text]. This protocol was used to test the validity of Tsallis statistics under electrophysiological conditions closely resembling physiological stimuli. The analysis shows that q-indexes are distinct depending on the extracellular potassium concentration. Our letter provides a general way to obtain the best estimate of parameters from a q-Gaussian distribution function. It also expands the validity of Tsallis statistics in realistic physiological stimulus conditions. In addition, we discuss the physical and physiological implications of these findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.