Abstract

Feature transformations are commonly used in speech recognition to account for distribution mismatches between the source and target domains also referred to as covariate shift. Linear affine or piecewise linear transformations are typically considered. In this paper, we present deep neural network DNN based nonlinear feature transformations estimated under the maximum likelihood criterion. We use the hidden Markov model HMM to model speech feature sequences and features in each HMM state assume a Gaussian mixture model GMM distribution. The network is pre-trained close to a linear transformation followed by a fine-tuning using the gradient descent algorithm. Due to the nonlinearity, the gradients and the partition functions of GMM-HMM state distributions are evaluated using the Monte Carlo MC method based on importance sampling. In addition, a deep stacked architecture is proposed to hierarchically build a DNN as a series of sub-networks with each representing a nonlinear transformation itself, which can be learned using a block-wise learning strategy. Applications of the proposed nonlinear transformations in speaker/environment adaptation and acoustic modeling in large vocabulary continuous speech recognition tasks show its superior performance over the widely-used constrained maximum likelihood linear regression CMLLR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.