Abstract
In epidemiologic studies of exposure-disease association, often only a surrogate measure of exposure is available for the majority of the sample. A validation sub-study may be conducted to estimate the relation between the surrogate measure and true exposure levels. In this article, we discuss three methods of estimation for such a main study/validation study design: (i) maximum likelihood (ML), (ii) multiple imputation (MI) and (iii) regression calibration (RC). For logistic regression, we show how each method depends on a different numerical approximation to the likelihood, and we adapt standard software to compute both MI and ML estimates. We use simulation to compare the performance of the estimators for both realistic and extreme settings, and for both internal and external validation designs. Our results indicate that with large measurement error or large enough sample sizes, ML performs as well as or better than MI and RC. However, for smaller measurement error and small sample sizes, either ML or RC may have the advantage. Interestingly, in most cases the relative advantage of RC versus ML was determined by the relative variance rather than the bias of the estimators. Software code for all three methods in SAS is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.