Abstract

The usefulness of fluorescence techniques for the study of macromolecular structure and dynamics depends on the accuracy and sensitivity of the methods used for data analysis. Many methods for data analysis have been proposed and used, but little attention has been paid to the maximum likelihood method, generally known as the most powerful statistical method for parameter estimation. In this paper we study the properties and behavior of maximum likelihood estimates by using simulated fluorescence intensity decay data. We show that the maximum likelihood method provides generally more accurate estimates of lifetimes and fractions than does the standard least-squares approach especially when the lifetime ratios between individual components are small. Three novelties to the field of fluorescence decay analysis are also introduced and studied in this paper: a) discretization of the convolution integral based on the generalized integral mean value theorem: b) the likelihood ratio test as a tool to determine the number of exponential decay components in a given decay profile; and c) separability and detectability indices which provide measures on how accurately, a particular decay component can be detected. Based on the experience gained from this and from our previous study of the Pade-Laplace method, we make some recommendations on how the complex problem of deconvolution and parameter estimation of multiexponential functions might be approached in an experimental setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.