Abstract

The maximum likelihood (ML) method for regression analyzes of censored data (below detection limit) for nonlinear models is presented. The proposed ML method has been translated into an equivalent least squares method (ML-LS). A two stage iterative algorithm is proposed to estimate statistical parameters from the derived least squares translation. The developed algorithm is applied to a nonlinear model for prediction of ambient air CO concentration in terms of concentrations of respirable particulate matter (RSPM) and NO2. It has been shown that if censored data are ignored or estimated through simplifications such as (i) censored data are equal to detection limit, (ii) censored data are half of the difference between detection limit and lower limit (e.g., zero or background level) or (iii) censored data are equal to lower limit, this can cause significant bias in estimated parameters. The developed ML-LS method provided better estimates of parameters than any of the simplifications in censored data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.