Abstract

The identification problem of output-error autoregressive (OEAR) systems with scarce measurements is considered in this paper. In order to overcome the massive absence of outputs, an interval-varying recursive identification algorithm is proposed through changing the sampling interval and skipping the missing outputs. Based on the maximum likelihood principle, a maximum likelihood interval-varying recursive least squares algorithm is proposed. The effectiveness of the proposed algorithm is tested by a numerical simulation example, and an application example about the heading motion control of underwater vehicle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.