Abstract
Multivariate t mixture (TMIX) models have emerged as a powerful tool for robust modeling and clustering of heterogeneous continuous multivariate data with observations containing longer than normal tails or atypical observations. In this paper, we explicitly derive the score vector and Hessian matrix of TMIX models to approximate the information matrix under the general and three special cases. As a result, the standard errors of maximum likelihood (ML) estimators are calculated using the outer-score, Hessian matrix, and sandwich-type methods. We have also established some asymptotic properties under certain regularity conditions. The utility of the new theory is illustrated with the analysis of real and simulated data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.