Abstract

Visual object trackers usually adopt filters, such as the Kalman filter (KF) and the particle filter (PF), in order to improve tracking accuracy by suppressing measurement noises. However, if the filters have infinite impulse response (IIR) structures, the visual trackers adopting them can exhibit degraded tracking performance when system models have parameter uncertainties or when the noise information is incorrect. To overcome this problem, in this paper, we propose a new finite impulse response (FIR) filter for visual object tracking (VOT). The proposed filter is derived by maximizing the likelihood function, and it is referred to as the maximum likelihood FIR filter (MLFIRF). We conducted extensive experiments to show that the MLFIRF provides superior and more reliable tracking results compared with the KF, PF, and H∞ filter (HF) in VOT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.