Abstract

We consider a one dimensional ballistic random walk evolving in an i.i.d. parametric random environment. We provide a maximum likelihood estimation procedure of the parameters based on a single observation of the path till the time it reaches a distant site, and prove that the estimator is consistent as the distant site tends to infinity. Our main tool consists in using the link between random walks and branching processes in random environments and explicitly characterising the limiting distribution of the process that arises. We also explore the numerical performance of our estimation procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.