Abstract
The Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) method provides a high-quality estimate of the control solution for an unconstrained satellite reorientation problem, and rapid, useful guesses needed for high-fidelity methods that can solve time-optimal reorientation problems with multiple path constraints. The CMA-ES algorithm offers two significant advantages over heuristic methods such as Particle Swarm or Bacteria Foraging Optimisation: it builds an approximation to the covariance matrix for the cost function, and uses that to determine a direction of maximum likelihood for the search, reducing the chance of stagnation; and it achieves second-order, quasi-Newton convergence behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.