Abstract
This paper describes an online maximum likelihood estimator for the transition probabilities associated with a jump Markov linear system (JMLS). The maximum likelihood estimator is derived using the reference probability method, which exploits an hypothetical probability measure to find recursions for complex expectations. Expectation maximization (EM) procedure is utilized for maximizing the likelihood function. In order to avoid the exponential increase in the number of statistics of the optimal EM algorithm, we make interacting multiple model (IMM)-type approximations. The resulting method needs the mode weights of an IMM filter with N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> components, where N is the number of models in the JMLS. The algorithm can also supply base-state estimates and covariances as a by-product. The performance of the estimator is illustrated on two simulated examples and compared to a recently proposed alternative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.