Abstract

We present a universal technique for quantum state estimation based on the maximum-likelihood method. This approach provides a positive definite estimate for the density matrix from a sequence of measurements performed on identically prepared copies of the system. The method is versatile and can be applied to multimode radiation fields as well as to spin systems. The incorporation of physical constraints, which is natural in the maximum-likelihood strategy, leads to a substantial reduction of statistical errors. Numerical implementation of the method is based on a particular form of the Gauss decomposition for positive definite Hermitian matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.