Abstract
ABSTRACT– The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the rise in spatial data analysis, as the relationship between the spatial correlation and measurement error influences parameter estimation. Therefore, in this study, the impacts of classical measurement error on the parameter estimation of the spatial lag model are theoretically examined for both response and explanatory variables. Then, using simulation studies, finite sample properties are investigated for various situations. The major findings indicate that although error-prone response variable has an opposing bias effect on parameter estimations, error-prone explanatory variables have a significant influence effect on the bias of parameter estimations. As a result, it is occasionally possible to obtain unbiased estimates only in certain circumstances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.