Abstract

The analysis of data subject to detection limits is becoming increasingly necessary in many environmental and laboratory studies. Covariates subject to detection limits are often left censored because of a measurement device having a minimal lower limit of detection. In this paper, we propose a Monte Carlo version of the expectation-maximization algorithm to handle large number of covariates subject to detection limits in generalized linear models. We model the covariate distribution via a sequence of one-dimensional conditional distributions, and sample the covariate values using an adaptive rejection metropolis algorithm. Parameter estimation is obtained by maximization via the Monte Carlo M-step. This procedure is applied to a real dataset from the National Health and Nutrition Examination Survey, in which values of urinary heavy metals are subject to a limit of detection. Through simulation studies, we show that the proposed approach can lead to a significant reduction in variance for parameter estimates in these models, improving the power of such studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.