Abstract

We analyze the problem of maximum likelihood estimation for Gaussian distributions that are multivariate totally positive of order two ($\mathrm{MTP}_{2}$). By exploiting connections to phylogenetics and single-linkage clustering, we give a simple proof that the maximum likelihood estimator (MLE) for such distributions exists based on $n\geq2$ observations, irrespective of the underlying dimension. Slawski and Hein [Linear Algebra Appl. 473 (2015) 145–179], who first proved this result, also provided empirical evidence showing that the $\mathrm{MTP}_{2}$ constraint serves as an implicit regularizer and leads to sparsity in the estimated inverse covariance matrix, determining what we name the ML graph. We show that we can find an upper bound for the ML graph by adding edges corresponding to correlations in excess of those explained by the maximum weight spanning forest of the correlation matrix. Moreover, we provide globally convergent coordinate descent algorithms for calculating the MLE under the $\mathrm{MTP}_{2}$ constraint which are structurally similar to iterative proportional scaling. We conclude the paper with a discussion of signed $\mathrm{MTP}_{2}$ distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.