Abstract
The block maxima method in extreme-value analysis proceeds by fitting an extreme-value distribution to a sample of block maxima extracted from an observed stretch of a time series. The method is usually validated under two simplifying assumptions: the block maxima should be distributed exactly according to an extreme-value distribution and the sample of block maxima should be independent. Both assumptions are only approximately true. The present paper validates that the simplifying assumptions can in fact be safely made. For general triangular arrays of block maxima attracted to the Fréchet distribution, consistency and asymptotic normality is established for the maximum likelihood estimator of the parameters of the limiting Fréchet distribution. The results are specialized to the common setting of block maxima extracted from a strictly stationary time series. The case where the underlying random variables are independent and identically distributed is further worked out in detail. The results are illustrated by theoretical examples and Monte Carlo simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.