Abstract

SummaryInterval-censored multivariate failure time data arise when there are multiple types of failure or there is clustering of study subjects and each failure time is known only to lie in a certain interval. We investigate the effects of possibly time-dependent covariates on multivariate failure times by considering a broad class of semiparametric transformation models with random effects, and we study nonparametric maximum likelihood estimation under general interval-censoring schemes. We show that the proposed estimators for the finite-dimensional parameters are consistent and asymptotically normal, with a limiting covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we develop an EM algorithm that converges stably for arbitrary datasets. Finally, we assess the performance of the proposed methods in extensive simulation studies and illustrate their application using data derived from the Atherosclerosis Risk in Communities Study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.