Abstract

ABSTRACTMethods are given for using readily available nonlinear regression programs to produce maximum likelihood estimates in a rather natural way. Used as suggested the common Gauss‐Newton algorithm for nonlinear least squares becomes the Fisher scoring algorithm for maximum likelihood estimation. In some cases it is also the Newton‐Raphson algorithm. The standard errors produced are the information theory standard errors up to a possible common multiple. This means that much of the auxiliary output produced by a nonlinear least squares analysis is directly applicable to a maximum likelihood analysis. Illustrative applications to Poisson, quantal response, multinomial, and log‐linear models are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.