Abstract

Using the maximum likelihood principle, a filtering based maximum likelihood recursive least squares parameter estimation algorithm is derived for controlled autoregressive ARMA systems. The basic idea is to use the noise transfer function to filter the input–output data and to replace the unmeasurable noise terms in the information vectors with their estimates. The simulation results indicate that the proposed estimation algorithm can effectively estimate the parameters of such systems and can generate more precise parameter estimates than the recursive maximum likelihood and the recursive generalized extended least squares algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.