Abstract

This paper develops a series of maximum-likelihood processors for matched-field source localization given various states of information regarding the frequency and time variation of source amplitude and phase, and compares these with existing approaches to coherent processing with incomplete source knowledge. The comparison involves elucidating each processor's approach to source spectral information within a unifying formulation, which provides a conceptual framework for classifying and comparing processors and explaining their relative performance, as quantified in a numerical study. The maximum-likelihood processors represent optimal estimators given the assumption of Gaussian noise, and are based on analytically maximizing the corresponding likelihood function over explicit unknown source spectral parameters. Cases considered include knowledge of the relative variation in source amplitude over time and/or frequency (e.g., a flat spectrum), and tracking the relative phase variation over time, as well as incoherent and coherent processing. Other approaches considered include the conventional (Bartlett) processor, cross-frequency incoherent processor, pair-wise processor, and coherent normalized processor. Processor performance is quantified as the probability of correct localization from Monte Carlo appraisal over a large number of random realizations of noise, source location, and environmental parameters. Processors are compared as a function of signal-to-noise ratio, number of frequencies, and number of sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.