Abstract

Target coverage and data collection are two fundamental problems for wireless sensor networks (WSNs). Target coverage is needed to select sensors in a given area that can monitor a set of interesting points. Data collection is needed to transmit the sensed data from sensors to a sink. Since, in many applications, sensors are battery powered, it is expected that a WSN can work untended for a long period. This paper addresses the scheduling problems for both target coverage and data collection in WSNs with the objective of maximizing network lifetime. First, a polynomial-time approximation scheme is developed for the case where the density of target points is bounded, and then, a polynomial-time constant-factor approximation algorithm is developed for the general case. It is also proved that it is NP-hard to find a maximum lifetime scheduling of target cover and data collection for a WSN, even if all the sensors have the same sensing radius and the same transmission radius. Further, the practical efficiency of our algorithms is analyzed through simulation. These extensive simulation results show better performances of our algorithms compared with other research findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.