Abstract

In order to extend the lifetime of a wireless sensor network, the energy consumption of individual sensor nodes need to be minimized. This can be achieved by minimizing the idle listening time with duty cycling mechanism and/or minimizing the number of communications per node. The nodes will have different relay loads for different routing strategies: therefore, the routing problem is important factor in minimization of the number of communications per node. In this paper, we investigate achievable network lifetime with a routing mechanism on top of an existing duty-cycling scheme. To this end, we formulated the routing problem for duty-cycling sensor network as a linear programming problem with the objective of maximizing the network lifetime. Using the developed linear programming formulation, we investigate the relationship between network lifetime and duty-cycling parameter for different data generation rates and determine the minimum duty-cycling parameter that meets the application requirements. To the best of our knowledge, this is the first mathematical programming formulation which addresses the maximum lifetime routing problem in duty-cycling sensor network. In order to illustrate the application of the analytical model, we solved the problem for different parameter settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.