Abstract

Small spheroidal samples of aqueous foam (‘‘foam drops’’) of varying gas volume fraction are acoustically levitated in an ultrasonic field. The normalized natural frequency and damping ratio are determined by treating a foam drop as a damped linear oscillator and measuring shape mode frequency response. The observed natural frequencies are compared to a wet foam model without any fitting parameters. Good agreement is found for gas volume fractions ranging from 0.01 to 0.87. The observed damping ratio of a foam drop exhibits a maximum for gas volume fractions 0.5 to 0.7. The data are inverted to infer the shear elastic modulus and its dependence on gas volume fraction for dry foams. [Work supported by NASA.]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.