Abstract

BackgroundAs sap flow research expands, new challenges such as fast sap flows or flows co-occurring with freeze/thaw cycles appear, which are not easily addressed with existing methods. In order to address these new challenges, sap flow methods capable of measuring bidirectional, high and slow sap flux densities (Fd, cm3 cm−2 h−1), thermal properties and stem water content with minimum sensitivity to stem temperature are required.PurposeIn this study we assessed the performance of a new low-power ratio-based algorithm, the maximum heat ratio (MHR) method, and compare it with the widely known heat ratio (HR) method using a cut-tree study to test it under high flows using Eucalyptus grandis trees, and a freeze/thaw experiment using Acer saccharum trunks to test its response to fast changing stem temperatures that result in freeze/thaw cycles.ResultsOur results indicate that MHR and HR had a strong (R2 = 0.90) linear relationship within a Fd range of 0–45 cm3 cm−2 h−1. Using the MHR algorithm, we were able to estimate wood thermal properties and water content, while extending the measuring range of HR to approximately 0–130 (cm3 cm−2 h−1). In our freeze/thaw experiment, the main discrepancy between MHR and HR was observed during freezing, where HR had consistently lower Fd (up to 10 cm3 cm−2 h−1), with respect to MHR. However, both algorithms identified similar zero flows.ConclusionConsequently, MHR can be an easy-to-implement alternative algorithm/method capable of handling extreme climatic conditions, which can also run simultaneously with HR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.