Abstract
We will study this problem and present an algorithm for finding the minimum-time-cost solution graph in an AND/OR graph. We will also study the following problems which often appear in industry when using AND/OR graphs to model manufacturing processes or to model problem solving processes: finding maximum (additive and non-additive) flows and critical vertices in an AND/OR graph. Though there are well known polynomial time algorithms for the corresponding problems in the traditional graph theory, we will show that generally it is NP-hard to find a non-additive maximum flow in an AND/OR graph, and it is both NP-hard and coNP-hard to find a set of critical vertices in an AND/OR graph. We will also present a polynomial time algorithm for finding a maximum additive flow in an AND/OR graph, and discuss the relative complexity of these problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.