Abstract
We deal with the maximization of classical Fisher information in a quantum system depending on an unknown parameter. This problem has been raised by physicists, who defined [Helstrom (1967) Phys. Lett. A 25 101–102] a quantum counterpart of classical Fisher information, which has been found to constitute an upper bound for classical information itself [Braunstein and Caves (1994) Phys. Rev. Lett. 72 3439–3443]. It has then become of relevant interest among statisticians, who investigated the relations between classical and quantum information and derived a condition for equality in the particular case of two-dimensional pure state systems [Barndorff-Nielsen and Gill (2000) J. Phys. A 33 4481–4490]. In this paper we show that this condition holds even in the more general setting of two-dimensional mixed state systems. We also derive the expression of the maximum Fisher information achievable and its relation with that attainable in pure states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.