Abstract

With the increasing of applications of Global Positioning System (GPS), the research on the factors affecting the radio signals is becoming more and more important. One of the most significant effects on ionosphere monitoring is the ionospheric radio occultation (IRO), and the IRO data is now serving as one of the most important monitoring sources for the ionospheric measurements. Meanwhile the inversion of the occultation data is a popular topic. The traditional Abel inversion process through compensated total electron content (TEC) is a linear inversion method, thus it would transfer the measurement errors directly to the inversion results. In order to improve the occultation results, we introduce in this paper two nonlinear methods, namely the regularization method and the maximum entropy regularization method. Through designed simulative experiments, we verify and compare these three methods, and conclude that the maximum entropy regularization method can reduce significantly the influence of measurement errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.