Abstract

In many realistic systems, maximum entropy principle (MEP) analysis provides an effective characterization of the probability distribution of network states. However, to implement the MEP analysis, a sufficiently long-time data recording in general is often required, e.g., hours of spiking recordings of neurons in neuronal networks. The issue of whether the MEP analysis can be successfully applied to network systems with data from short-time recordings has yet to be fully addressed. In this work, we investigate relationships underlying the probability distributions, moments, and effective interactions in the MEP analysis and then show that, with short-time recordings of network dynamics, the MEP analysis can be applied to reconstructing probability distributions of network states that is much more accurate than the one directly measured from the short-time recording. Using spike trains obtained from both Hodgkin-Huxley neuronal networks and electrophysiological experiments, we verify our results and demonstrate that MEP analysis provides a tool to investigate the neuronal population coding properties for short-time recordings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.