Abstract

Pine wilt disease is a devastating forest disease caused by the pinewood nematode Bursaphelenchus xylophilus, which has been listed as the object of quarantine in China. Climate change influences species and may exacerbate the risk of forest diseases, such as the pine wilt disease. The maximum entropy (MaxEnt) model was used in this study to identify the current and potential distribution and habitat suitability of three pine species and B. xylophilus in China. Further, the potential distribution was modeled using the current (1970–2000) and the projected (2050 and 2070) climate data based on two representative concentration pathways (RCP 2.6 and RCP 8.5), and fairly robust prediction results were obtained. Our model identified that the area south of the Yangtze River in China was the most severely affected place by pine wilt disease, and the eastern foothills of the Tibetan Plateau acted as a geographical barrier to pest distribution. Bioclimatic variables related to temperature influenced pine trees’ distribution, while those related to precipitation affected B. xylophilus’s distribution. In the future, the suitable area of B. xylophilus will continue to increase; the shifts in the center of gravity of the suitable habitats of the three pine species and B. xylophilus will be different under climate change. The area ideal for pine trees will migrate slightly northward under RCP 8.5. The pine species will continue to face B. xylophilus threat in 2050 and 2070 under the two distinct climate change scenarios. Therefore, we should plan appropriate measures to prevent its expansion. Predicting the distribution of pine species and the impact of climate change on forest diseases is critical for controlling the pests according to local conditions. Thus, the MaxEnt model proposed in this study can be potentially used to forecast the species distribution and disease risks and provide guidance for the timely prevention and management of B. xylophilus.

Highlights

  • Pines are coniferous trees of the Pinus genus with high economic importance in China

  • We aimed to (1) identify the critical environmental factors affecting the geographical distribution of three pine species and B. xylophilus based on climate similarity and combining the environmental factors and occurrence records to establish maximum entropy (MaxEnt) models; (2) predict the areas suitable as habitats of pine species and B. xylophilus under two representative concentration paths (RCP 2.6 and 8.5) at different periods based on MaxEnt and ArcGIS; (3) systematically analyze the present situation and the spatiotemporal changes in pine species and B. xylophilus caused by climate change; and (4) and expound the impact of global warming and propose future research directions

  • We assessed the correlation between environmental variables and the research objects, and found that the bioclimatic variables related to temperature affect and limit the distribution of pine trees, while those related to precipitation affect the distribution of B. xylophilus

Read more

Summary

Introduction

Pines are coniferous trees of the Pinus genus with high economic importance in China. They have broad application prospects in the lumber, fuel, and chemical industries (Karchesy, 1979; Thomas et al, 2007) and play important roles in soil and water conservation (Hongyan et al, 2003; Li et al, 2011b). Pine wilt disease, caused by the pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle, is one of the most devastating coniferous forest diseases (Mamiya, 1983) and a significant challenge to the pine industry. Studies have shown that areas with an average annual temperature of 10–14°C, especially the southern parts of Yellow River in China, are the likely distribution areas of pine wilt disease, indicating a threat from pine wilt disease to nearly 6,000 km of pine forests (Mamiya, 1983; Braasch, 2001; Diekmann, 2002)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call