Abstract

Using a variational formulation, we derive the Kirkwood superposition approximation for systems at equilibrium in the thermodynamic limit. We define the entropy of the triplet correlation function and show that the Kirkwood closure brings the entropy to its maximal value. This approach leads to a different interpretation for the Kirkwood closure relation, usually explained by probabilistic considerations of dependence and independence of particles. The Kirkwood closure is generalized to finite volume systems at equilibrium by computing the pair correlation function in finite domains. Closure relations for high order correlation functions are also found using a variational approach. In particular, maximizing the entropy of quadruplets leads to the high order closure g(1234)=g(123)g(124)g(134)g(234)/[g(12)g(13)g(14)g(23)g(24)g(34)] used in the Born-Green-Yvon 2 equations which are a pair of integral equations for the triplet and pair correlation functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.