Abstract
Traditional statistical models for speech recognition have all been based on a Bayesian framework using generative models such as hidden Markov models (HMMs). The paper focuses on a new framework for speech recognition using maximum entropy direct modeling, where the probability of a state or word sequence given an observation sequence is computed directly from the model. In contrast to HMMs, features can be asynchronous and overlapping. This model therefore allows for the potential combination of many different types of features. A specific kind of direct model, the maximum entropy Markov model (MEMM), is studied. Even with conventional acoustic features, the approach already shows promising results for phone level decoding. The MEMM significantly outperforms traditional HMMs in word error rate when used as stand-alone acoustic models. Preliminary results combining the MEMM scores with HMM and language model scores show modest improvements over the best HMM speech recognizer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.