Abstract
We present a unified and complete account of maximum entropy density estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we easily derive performance guarantees for many known regularization types, including l1, l2, l22, and l2 + l22 style regularization. We propose an algorithm solving a large and general subclass of generalized maximum entropy problems, including all discussed in the paper, and prove its convergence. Our approach generalizes and unifies techniques based on information geometry and Bregman divergences as well as those based more directly on compactness. Our work is motivated by a novel application of maximum entropy to species distribution modeling, an important problem in conservation biology and ecology. In a set of experiments on real-world data, we demonstrate the utility of maximum entropy in this setting. We explore effects of different feature types, sample sizes, and regularization levels on the performance of maxent, and discuss interpretability of the resulting models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.