Abstract
We propose a method for estimating probability density functions (pdf) and conditional density functions (cdf) by training on data produced by such distributions. The algorithm employs new stochastic variables that amount to coding of the input, using a principle of entropy maximization. It is shown to be closely related to the maximum likelihood approach. The encoding step of the algorithm provides an estimate of the probability distribution. The decoding step serves as a generative mode, producing an ensemble of data with the desired distribution. The algorithm is readily implemented by neural networks, using stochastic gradient ascent to achieve entropy maximization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.