Abstract

Over the last 100 years, a large number of distributions has been proposed for the modeling of size phenomena, notably the size distribution of personal incomes. The most widely known of these models are the Pareto, log-normal, generalized log-normal, generalized Gamma, generalized Beta of the first and of the second kind, the Dagum, and the Singh-Madala distributions. They are discussed as a group in this note, as general forms of income distributions. Several well-known models are derived from them as sub-families with interesting applications in economics. The behaviour of their entropy is what is here under study. Maximum entropy formalism chooses certain forms of entropy and derives an exponential family of distributions under certain constraints. Finding constraints that income distributions have maximum entropy is another direction of this note. In economics and social statistics, the size distribution of income is the basis of concentration on the Lorenz curve. The difference between the tail of the Lorenz function and the Lorenz function itself determines the entropy of mixing. In the final section of this note, theoretical properties of well-known income distributions are also derived in view of the entropy of mixing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.