Abstract
We study a single removable server in an M/G/1 queueing system operating under the N policy in steady-state. The server may be turned on at arrival epochs or off at departure epochs. Using the maximum entropy principle with several well-known constraints, we develop the approximate formulae for the probability distributions of the number of customers and the expected waiting time in the queue. We perform a comparative analysis between the approximate results with exact analytic results for three different service time distributions, exponential, 2-stage Erlang, and 2-stage hyper-exponential. The maximum entropy approximation approach is accurate enough for practical purposes. We demonstrate, through the maximum entropy principle results, that the N policy M/G/1 queueing system is sufficiently robust to the variations of service time distribution functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.