Abstract

In this paper, a variable dc link technique is proposed to track the maximum efficiency point of the LLC converter for plug-in electric vehicle battery-charging applications over a wide battery state-of-charge (SOC) range. With the proposed variable dc link control approach, the dc link voltage follows the battery pack voltage. The operating point of the LLC converter is always constrained to the proximity of the primary resonant frequency so that the circulating current in the magnetizing inductor and the turning-off currents of MOSFETs are minimized. In comparison with conventional approaches, the proposed variable dc link voltage methodology demonstrates efficiency improvement across the wide SOC range. Efficiency improvements of 2.1% at the heaviest load condition and 9.1% at the lightest load condition are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.