Abstract

Surfactants are superior to polymers in reducing drag and their advantages are very well established. As drag reducers, several factors, such as concentration, temperature, salinity, shear rate, etc., can affect their behavior. Other unique factors relevant to surfactants may include tubing diameter (scale-up effect), head group structure, counterion, charge, etc. Although, drag reduction envelope is customarily employed to investigate drag reduction phenomena, it is defined only for polymeric fluids in both straight and coiled tubing and for surfactant-based (SB) fluids in straight tubing. No such envelope is available for SB fluids in coiled tubing. The present research aims at experimentally investigating the drag reduction characteristics of the most widely used Aromox APA-T surfactant-based fluids. It is a highly active surfactant used as gelling agent in aqueous and brine base fluids. Flow data are gathered using small and large scale flow loops. Straight and coiled tubing with various sizes (1.27 cm to 7.30 cm o.d.) and curvature ratios (0.01 to 0.031) covering the field application range are utilized. The results show that SB fluids exhibit superior drag reduction characteristics. Their behavior is significantly affected by surfactant concentration, shear, tubing size, and geometry. Higher drag reduction is seen in straight tubing than in coiled tubing and increasing curvature ratio yields higher friction pressure losses. In coiled tubing, SB fluids exhibit better drag reduction characteristics than Shah and Zhou maximum drag reduction (MDR) asymptote for polymeric fluids. Therefore, a new maximum drag reduction asymptote is developed using data gathered in 1.27 cm o.d. tubing. The proposed correlation agrees with Zakin MDR asymptote for SB fluids in straight tubing where the curvature ratio is set to be zero. Employing the proposed correlation, a modified drag reduction envelope can be used to evaluate drag reduction characteristics of SB fluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.