Abstract

For nonlinear systems, both the cubature Kalman filter (CKF) and square-root cubature Kalman filter (SCKF) can get good estimation performance under Gaussian noise. However, the actual driving environment noise mostly has non-Gaussian properties, leading to a significant reduction in robustness and accuracy for distributed vehicle state estimation. To address such problems, this paper uses the square-root cubature Kalman filter with the maximum correlation entropy criterion (MCSRCKF), establishing a seven degrees of freedom (7-DOF) nonlinear distributed vehicle dynamics model for accurately estimating longitudinal vehicle speed, lateral vehicle speed, yaw rate, and wheel rotation angular velocity using low-cost sensor signals. The co-simulation verification is verified by the CarSim/Simulink platform under double-lane change and serpentine conditions. Experimental results show that the MCSRCKF has high accuracy and enhanced robustness for distributed drive vehicle state estimation problems in real non-Gaussian noise environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call