Abstract

The least-squares criterion is widely used in the multivariate calibration models. Rather than using the conventional linear least-squares metric, we employ a nonlinear correntropy-based metric to describe the spectra-concentrate relations and propose a maximum correntropy criterion based regression (MCCR) model. To solve the correntropy-based model, a half-quadratic optimization technique is developed to convert a non-convex and nonlinear optimization problem into an iteratively re-weighted least-squares problem. Finally, MCCR can provide an accurate estimation of the regression relation by alternatively updating an auxiliary vector represented as a nonlinear Gaussian function of fitted residuals and a weight computed by a regularized weighted least-squares model. The proposed method is compared to some modified PLS algorithms and robust regression methods on four real near-infrared (NIR) spectra data sets. Experimental results demonstrate the efficacy and effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.