Abstract
Traditional multi-class image classification needs a large number of training samples for building a classifier model. However, it is very time-consuming and costly to obtain labels for a large number of training samples from human experts. Active learning is a feasible solution. This paper proposes a maximum classification optimization method (MCO) for actively selecting unlabeled images to acquire labels. It integrated the information of an unlabeled sample from different perspectives with two steps. It first chooses a subset of candidates, and then selects the best from these candidates. Our experimental results show that the maximum classification optimization method outperforms two popular exiting methods (entropy-based uncertainty and BvSB).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.