Abstract

Maximum bubble pressure rheology is used to characterize organogels of 0.25 wt % 12-hydroxystearic acid (12-HSA) in mineral oil, 3 wt % (1,3:2,4) dibenzylidene sorbitol (DBS) in poly(ethylene glycol), and 1 wt % 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol (DMDBS) in poly(ethylene glycol). The maximum pressure required to inflate a bubble at the end of capillary inserted in a gel is measured. This pressure is related to the gel modulus in the case of elastic cavitation and the gel modulus and toughness in the case of irreversible fracture. The 12-HSA/mineral oil gels are used to demonstrate that this is a facile technique useful for studying time-dependent gel formation and aging and the thermal transition from a gel to a solution. Comparison is made to both qualitative gel tilting measurements and quantitative oscillatory shear rheology to highlight the utility of this measurement and its complementary nature to oscillatory shear rheology. The DBS and DMDBS demonstrate the generality of this measurement to measure gel transition temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.