Abstract

The flow through the regenerator of a Stirling engine is driven by differences of pressure in the compression and expansion spaces. These differences lead to power dissipation in the regenerator. Using linearized theory, it is shown that this dissipation severely limits the maximum attainable thermal efficiency and nondimensional power output. The maximum attainable values are independent of the value of the regenerator conductance. For optimized nondimensional power output, the thermal efficiency equals only half the Carnot value. The power dissipated in the regenerator is removed as part of the heat withdrawn at the regenerator’s cold side. Analogous results are presented for the Stirling refrigerator. At optimized nondimensional rate of refrigeration, its coefficient of performance is less than half the Carnot value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.