Abstract
In this paper we study numerical behavior of several iterative Krylov subspace solvers applied to the solution of large-scale saddle point problems. Two main representatives of segregated solution approach are analyzed: the Schur complement reduction method based on the elimination of primary unknowns and the null-space projection method, which relies on a basis for the subspace described by the constraints. We show that the choice of the back-substitution formula may considerably influence the maximum attainable accuracy of approximate solutions computed in finite precision arithmetic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.