Abstract

PurposeSafety is an important issue when manipulators operate in an environment where humans are present, such as the agriculture industry. An intrinsically safe mechanical system guarantees human safety when electronics or controls fail. However, industry also demands a certain operating velocity. A low inertia is the most important aspect to combine safety with a useful operating velocity, because this will limit the amount of kinetic or potential energy in the system and the required actuation forces. Low‐actuation forces limit the amount of static contact pressure between manipulator and human, a requirement for intrinsic safety. Low energy means that less contact force is required to put the manipulator to a stop in collision, an additional requirement. The goal of this paper is to find the maximum industrially applicable, manipulator mass for which intrinsic mechanical safety is guaranteed.Design/methodology/approachObserving existing and proposed manipulators in agriculture results in a required cycle time of 0.9 s, trajectory of 0.8 m and payload of 2 kg. Three important trade‐offs applying to the manipulator are identified. The first is between maximum velocity and acceleration, using cycle time and trajectory. The second is between maximum acceleration and mass, based on a measure for pain in contact pressure. The third is between maximum velocity and mass, using a collision model and the contact pressure during collision.FindingsCombining all three trade‐offs results in an allowable arm effective inertia of 5.1 kg. Taking payload into account and converting to a realistic mass distribution results in a total mass of 9.3 kg. Compared to existing manipulators, both mass and payload are ambitious but realistic for the future development of an intrinsically safe manipulator.Research limitations/implicationsAccuracy in positioning is not taken into account.Originality/valueThis paper combines safety criteria on maximum energy and maximum static pressure, while also taking industrial applicable operating velocity into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.