Abstract
AbstractWe show that a typical d‐regular graph G of order n does not contain an induced forest with around ${2 {\rm In} d \over d}$ vertices, when n ≫ d ≫ 1, this bound being best possible because of a result of Frieze and Łuczak [6]. We then deduce an affirmative answer to an open question of Edwards and Farr (see [4]) about fragmentability, which concerns large subgraphs with components of bounded size. An alternative, direct answer to the question is also given. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 149–156, 2008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.