Abstract

The maximum achievable characteristics of optical communication systems with different kinds of pulse position modulation have been investigated within the framework of the number-state model. It is shown that the ultimate efficiency in optical systems with ordinary pulse position modulation is determined by the ratio of the number of photons in the signal chip to the number of chips in the signal frame. Maximum achievable efficiencies of all considered methods is compared also. The companions shows that at great values of modulation format the ultimate efficiency of pulse position modulation is higher than that of the multipulse modulation. Overlapping pulse position modulation is shown to be the most favorable one for communication channels. The application of additional encoding to such systems allows to achieve the highest power efficiency of information transmission in optical communication channels.© (2002) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call