Abstract
This study used the psychophysical approach to evaluate the effects of asymmetric lifting on the maximum acceptable weight of lift (MAWL) and the resulting heart rate, oxygen uptake and rating of perceived exertion (RPE). A randomized complete block factorial design was employed. Twelve female college students lifted weights at three different lifting frequencies (one-time maximum, 1 and 4 lifts/min) in the sagittal plane and at three different asymmetric angles (30°, 60°, and 90°) from the floor to a 68-cm height pallet. This lifting experiment was conducted for a 1-h work period using a free-style lifting technique. The MAWLs for asymmetric lifting were significantly lower than those for symmetric lifting in the sagittal plane. The MAWL decreased with the increase in the angle of asymmetry. However, the heart rate, oxygen uptake and RPE remained unchanged. Though the MAWL decreased significantly with lifting frequency, both the physiological costs (heart rate and oxygen uptake) and rating of perceived exertion increased with the increase in lift frequency. The most stressed body part was the arm. Lifting frequency had no significant effect on the percentage decrease in MAWL from the sagittal plane values. On average, decreases of 5%, 9% and 14% for MAWL at 30°, 60° and 90° asymmetric lifting, respectively, were revealed. This result was in agreement with the findings of Chinese males studied by Wu [Int. J. Ind. Ergonom. 25 (2000) 675]. The percentage decrease in MAWL with twisting angle for the Chinese participants was somewhat lower than those for Occidental participants. In addition, even though there was an increase in heart rate and RPE with the increase in the symmetrical lift angle for Occidental participants, it was different from the Chinese participants. Lastly, the 1991 NIOSH equation asymmetry multiplier is more conservative in comparison with the results of the present study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.