Abstract
In order to reflect the statistics of high peak and heavy tail, speckle in synthetic aperture radar images is modeled as heavy-tailed Rayleigh distribution. First, based on Gamma prior distribution and heavy-tailed Rayleigh distribution of speckle, the maximum a posteriori filtering equation is proposed and its analytical form is provided in given characteristic parameter. Second, parameters of heavy-tailed Rayleigh distribution are estimated from the observed image using Mellin transformation. Last, maximum a posteriori de-speckling experiments and their quantitative measures are given. In order to eliminate the influence of window size and noise intensity on de-speckling results, dynamic relations of the de-speckling capability to noise variance and window size are suggested respectively. Results demonstrate that the heavy-tailed Rayleigh distribution accords with the real statistics of speckle, so the maximum a posteriori filter in heavy-tailed Rayleigh distribution of speckle has higher capability of noise reduction compared to the one in Rayleigh distribution of speckle and the Kuan filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.