Abstract

Hidden Markov models (HMM) have recently risen as a key generative machine learning approach for time series data study and analysis. While early works focused only on applying HMMs for speech recognition, HMMs are now prominent in various fields such as stock market forecasting, video classification, and genomics. In this paper, we develop a Maximum A Posteriori (MAP) framework for learning the Dirichlet and Beta-Liouville HMMs that have been proposed recently as an efficient way for modeling sequential proportional data. In contrast to the conventional Baum Welch algorithm, commonly used for learning HMMs, the proposed algorithm places priors for the learning of the desired parameters; hence, regularizing the estimation process. We validate our proposed approach on two challenging real applications; namely, dynamic texture classification and infrared action recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.