Abstract
One of the challenges of the design of Software Defined Radios (SDR) is to maintain a high level of reconfigurability without sacrificing data rates. In this paper, we consider the USRP N210, which is an SDR kit made by Ettus Research. It consists of an FPGA connected to an RF front-end. The USRP is operated by a host computer where most of the processing is done while the FPGA is used mainly to control the RF front-end, manage communication with the host, and convert sample rates. The maximal rate supported by the USRP hardware can not be practically achieved due to the bottleneck in the data transfer between the host and USRP and the limited computational ability of the computer. To deal with this problem, we implement a modulator and demodulator in the FPGA of the USRP. The proposed system is capable of processing data at the maximum sample rate supported by the hardware. This is accomplished by transferring only raw data between host and USRP, reducing transfer rate by up to 64 times; thus, bypassing the host transfer bottleneck. Additionally, offloading some of the processing to the FPGA makes communication at the maximum rate achievable with an off the shelf computer. An evaluation of the performance of the suggested system from the communication perspective is performed. We also showcase the system's ability to work at the maximum sample rate supported by the USRP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.